Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.729
Filtrar
1.
PeerJ ; 12: e17129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560477

RESUMEN

Background: Controlling the substrate moisture is a significant challenge in black soldier fly (BSF) farming. Many substrates have a high moisture content, which results in a low BSF biomass and a high mortality. One potential solution involves incorporating dry substrates into the food mix to mitigate the excessive moisture. However, little information about the types and quantities of dry substrates is available. Methods: Six different dry materials-rice husk (RH), rice bran (RB), rice husk ash (RHA), coconut coir dust (CC), rubberwood sawdust (RSD), and spent coffee grounds (SCGs)-were evaluated by combining with pure minced mixed vegetables in varying proportions (0%, 5%, 10%, 15%, 25%, and 50% by weight). This study encompassed both small-scale and medium-scale experiments to comprehensively assess the effects of the addition of each of these different dry substrates and their quantities on aspects of the development of BSF, such as BSF biomass, larval duration, mortality rates, adult sex ratio, and the moisture removal efficiency of each substrate mixture. Results: Each dry substrate had specific properties. Although RB emerged as a favorable dry substrate owing to its nutritional content and substantial water-holding capacity, excessive use of RB (>15% by weight) resulted in elevated temperatures and subsequent desiccation of the substrate, potentially leading to larval mortality. In contrast, RH demonstrated the ability to support improved larval duration and growth, permitting its utilization in higher proportions (up to 50%). On the other hand, CC, RHA, and SCG are better suited for inclusion in BSF larval substrates in smaller quantities. Discussion: Some dry substrates require a pretreatment process to eliminate toxic substances prior to their incorporation into substrate mixtures, such as CC and SCG. A potential alternative solution involves employing a combination of various dry substrates. This approach aims to enhance the substrate moisture control and subsequently improve the BSF rearing performance.


Asunto(s)
Alimentación Animal , Dípteros , Animales , Alimentación Animal/análisis , Larva , Verduras , Café
2.
Parasitol Res ; 123(4): 174, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561560

RESUMEN

Several species of horse flies (Diptera: Tabanidae) are known as vectors of Trypanosoma (Megatrypanum) theileri and T. theileri-like trypanosomes; these host-parasite relationships were established based on the developmental stages of these parasites discovered in the hindgut of horse flies. T. theileri and T. theileri-like trypanosomes have been detected in cattle and wild deer in Japan; however, the vector horse fly species remains unidentified. Therefore, in this study, we aimed to identify the potential horse fly species serving as vectors of T. theileri in Japan. A total of 176 horse flies were collected between June to September 2020 and 2021 in Tokachi, Hokkaido, Japan. The T. theileri infection in the captured horse flies was determined by PCR and microscopic analyses of their midgut and hindgut. Additionally, the trypanosome, microscopically detected in a horse fly, was molecularly characterized and phylogenetically analyzed using 18S rRNA and partial cathepsin L-like protein gene (CATL) sequence of the trypanosome. The microscopy and PCR analyses revealed 0.57% and 35.8% prevalence of T. theileri in horse flies, respectively. Epimastigote stages of T. theileri, adhered to the hindgut epithelial cells of Tabanus chrysurus via flagella or actively moving in the lumen of the gut, were detected. Phylogenetic analysis revealed the connection of isolated trypanosomes with T. theileri in the TthI clade. These results suggest that Ta. chrysurus is a potential vector of T. theileri.


Asunto(s)
Ciervos , Dípteros , Trypanosoma , Tripanosomiasis , Animales , Bovinos , Tripanosomiasis/epidemiología , Tripanosomiasis/veterinaria , Tripanosomiasis/parasitología , Filogenia , Japón , Ciervos/parasitología , Dípteros/parasitología
3.
Sci Rep ; 14(1): 8218, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589432

RESUMEN

Flies belonging to the Sarcophagidae family play a significant role in forensic investigations by aiding in the estimation of post-mortem interval through the assessment of the developmental time of their immature stages and/or the succession patterns of species on carcasses and cadavers. In this regard, this study aimed to investigate the ecological succession of these flies on pig carcasses within Cerrado of Brazil. The progression of fly succession was examined over a 10-day period using the Threshold Indicator Taxa Analysis (TITAN) approach. Six Z + species (Oxysarcodexia thornax (Walker), Peckia (Sarcodexia) lambens (Wiedemann), Peckia (Euboettcheria) collusor (Curran & Walley), Ravinia belforti (Prado & Fonseca), Tricharaea (Sarcophagula) canuta (Wulp) and Tricharaea (Sarcophagula) occidua (Fabricius)) were identified, with change points ranging from 2.5 to 3 days during the dry season and 2.5 to 5.5 days during the rainy season. Two Z- species (Dexosarcophaga carvalhoi (Lopes) and Peckia (Sarcodexia) tridentata (Hall)) were present, with a change point of 6.5 days during the rainy season. This study provides a continuous analysis of the temporal succession of flies, enabling an investigation into species progression based on their change points and directions (Z + and Z- ), thereby offering methodological advancements to avoid the arbitrary categorization of inherently continuous data.


Asunto(s)
Dípteros , Hidrozoos , Sarcofágidos , Animales , Porcinos , Brasil , Autopsia
4.
Waste Manag ; 180: 106-114, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564911

RESUMEN

Treating food waste using black soldier fly larvae (BSFL) is widely regarded as a promising nature-based measure. This study explored the influence of food waste particle sizes on substrate properties and its subsequent effects on bioconversion efficiency and gut microbiota. The results indicated that particle sizes mainly ranging from 4 mm to 10 mm (T1) significantly increased the weight loss rate of food waste by 35 % and larval biomass by 38 % compared to those in T4 (particle sizes mostly less than 2 mm) and promoted the bioconversion of carbon and nitrogen into larvae and gases. Investigation of substrates properties indicated that the final pH value of T1 was 7.79 ± 0.10, with Anaerococcus as the predominant substrate microorganism (relative abundance: 57.4 %), while T4 exhibited a final pH value of 5.71 ± 0.24, with Lactobacillus as the dominant microorganism (relative abundance: 95.2 %). Correlation analysis between substrate chemical properties and microbial community structure unveiled a strong relationship between substrate pH and the relative abundance of Anaerococcus and Lactobacillus. Furthermore, beneficial microorganisms such as Lactobacillus and Enterococcus colonized the BSFL gut of T1, while pathogenic bacterium Morganella, detrimental to BSFL gut function, was enriched in T4 (relative abundance: 60.9 %). Nevertheless, PCA analysis indicated that alterations in the gut microbial community structure may not be attributed to the substrate microorganisms. This study establishes particle size as a crucial parameter for BSFL bioconversion and advances understanding of the relationship between gut microbiota and substrate microbiota.


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Eliminación de Residuos , Animales , Larva , Alimentos
5.
BMC Res Notes ; 17(1): 98, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561830

RESUMEN

INTRODUCTION: Dermatobia hominis belongs to the Cuterebridae family, Diptera order; These flies inhabit tropical regions where they are called "fly of death" since the larvae are capable of causing lesions in domestic animals, wild animals including humans, the adult females of D. hominis capture other dipteran to oviposit their eggs on them (phoresis), when hematophagous mosquitoes land on an animal and / or human in order to feed on their blood, the eggs hatch and the larvae immediately penetrate the skin where they will develop to later abandon the host, then in the soil and / or other moist substrate the pupal stage develops, finally new adult flies will emerge from the pupae. OBJECTIVE: The primary goal of the present study was to determine as first record, the presence of Psorophora ferox infested with eggs of Dermatobia hominis, Peru. METHODOLOGY: The present study was carried out in an area of the private reserve "El Vencedor", located within the city of Pucallpa, Ucayali Region-Perú. The area is characterized by being humid tropical, with an average temperature of 26ºC and humidity of 92%, while the annual precipitation is approximately 1570 mm3. The capture method was carried out with the help of a hand net type "butterfly" or also called Jama. RESULTS: A total of 668 mosquitoes of different species were collected, the most abundant being Psorophora albigenu and Psorophora ferox, which represented 88.72% and the least abundant was Culex coronator and Uranotaenia apicalis with 0.15% of the total sample collected. CONCLUSIONS: Within these specimens it was captured a mosquito of the species Ps. ferox with the presence of 8 eggs of D. hominis, of which 3 would have hatched, while in the remaining 5, the larvae would remain inside the eggs.


Asunto(s)
Culicidae , Dípteros , Animales , Femenino , Adulto , Humanos , Perú , Larva , Piel , Pupa
6.
Sci Rep ; 14(1): 7995, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580701

RESUMEN

Artificial light at night (ALAN) is known to affect organisms in terrestrial ecosystems and adjacent litoral habitats. In the present study, we tested the effect of ALAN on the spatial distribution of organisms in open waters, using the insect larvae of Chaoborus flavicans as an example. During the day C. flavicans typically hide from visually hunting fish in deep, dark, anoxic waters. On safer nights, they forage in rich subsurface waters. Nighttime field tests revealed that light from an HPS street lamp mounted on a boat anchored in open water attracted planktivorous fish, but deterred planktonic Chaoborus from rich but risky surface waters. Chaoborus did not descend to the safest, anoxic hypolimnion, but remained in hypoxic mid-depth metalimnion, which does not appear to be a perfect refuge. Neither light gradient nor food distribution fully explained their mid-depth residence under ALAN conditions. A further laboratory test revealed a limited tolerance of C. flavicans to anoxia. Half of the test larvae died after 38 h at 9 °C in anoxic conditions. The trade-off between predation risk and oxygen demand may explain why Chaoborus did not hide in deep anoxic waters, but remained in the riskier metalimnion with residual oxygen under ALAN conditions.


Asunto(s)
Dípteros , Ecosistema , Animales , Contaminación Lumínica , Larva , Peces , Oxígeno , Hipoxia , Culicomorpha , Luz
7.
Rev Bras Parasitol Vet ; 33(2): e019923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656051

RESUMEN

Oestrus ovis larvae are obligate parasites of vertebrates and cause cavitary myiasis (oestrosis) in sheep and goats. It is also reported as a zoonosis causing ophthalmomyiasis and nasopharyngeal myiasis. Despite being relatively common in Brazil, epidemiological studies on O. ovis are scarce. Considering that the infestation is influenced by the climate and biomes of the studied region, we aimed to investigate the seasonal prevalence of O. ovis among slaughtered sheep in the northern region of the state of Mato Grosso, Brazil. The heads of sheep (n=697) slaughtered at a slaughterhouse in the municipality of Terra Nova do Norte (November 2011 to November 2013) were collected to count, catalog, and identify the larvae found in the upper respiratory tract. Overall, 45.77% (319/697) of the animals were infested with 2,412 recovered larvae, 96.89% (2,337/2,412) of which were identified at the species level as O. ovis. Seasonal variations in prevalence ranged from 41% (spring) to 56% (summer); however, no correlation was observed between prevalence and season, mean humidity, or temperature. In conclusion, parasitism by O. ovis in sheep in the studied area, occurs year-round, considering the occurrence of larvae (L1, L2, and L3) throughout the year, probably because of the area's environmental conditions.


Asunto(s)
Dípteros , Miasis , Estaciones del Año , Enfermedades de las Ovejas , Animales , Brasil/epidemiología , Ovinos/parasitología , Prevalencia , Miasis/veterinaria , Miasis/epidemiología , Miasis/parasitología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/parasitología , Larva
9.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488057

RESUMEN

Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.


Asunto(s)
Mariposas Diurnas , Dípteros , Masculino , Femenino , Animales , Mariposas Diurnas/genética , Cromosomas/genética , Genoma , Larva/genética , Transcriptoma , Dípteros/genética
10.
PLoS Negl Trop Dis ; 18(3): e0012027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38547087

RESUMEN

BACKGROUND: Human myiasis is a parasitic dipteran fly infestation that infects humans and vertebrates worldwide. However, the disease is endemic in Sub-Saharan Africa and Latin America. In Sub-Saharan Africa, it is under-reported and therefore its prevalence is unknown. This systematic review aims to elucidate the prevalence of human myiasis, factors that influence the infection, and myiasis-causing fly species in SSA. The review also dwelled on the common myiasis types and treatment methods of human myiasis. METHODS: Here, we collect cases of human myiasis in Sub-Saharan Africa based on literature retrieved from PubMed, Google Scholar and Science Direct from 1959 to 2022. A total of 75 articles and 157 cases were included in the study. The recommendations of PRISMA 2020 were used for the realization of this systematic review. RESULTS: In total, 157 cases of human myiasis in SSA were reviewed. Eleven fly species (Cordylobia anthropophaga, Cordylobia rodhaini, Dermatobia hominis, Lucilia cuprina, Lucilia sericata, Oestrus ovis, Sarcophaga spp., Sarcophaga nodosa, Chrysomya megacephala, Chrysomya chloropyga and Clogmia albipuntum) were found to cause human myiasis in SSA. Cordylobia anthropophaga was the most prevalent myiasis-causing species of the reported cases (n = 104, 66.2%). More than half of the reported cases were from travelers returning from SSA (n = 122, 77.7%). Cutaneous myiasis was the most common clinical presentation of the disease (n = 86, 54.7%). Females were more infected (n = 78, 49.6%) than males, and there was a higher infestation in adults than young children. CONCLUSION: The findings of this study reveals that international travelers to Sub-Saharan Africa were mostly infested therefore, we recommend that both international travelers and natives of SSA be enlightened by public health officers about the disease and its risk factors at entry points in SSA and the community level respectively. Clinicians in Sub-Saharan Africa often misdiagnose the disease and most of them lack the expertise to properly identify larvae, so we recommend the extensive use of molecular identification methods instead.


Asunto(s)
Calliphoridae , Dípteros , Miasis , Psychodidae , Masculino , Adulto , Animales , Femenino , Niño , Humanos , Preescolar , Miasis/parasitología , Larva , África del Sur del Sahara/epidemiología
11.
Sci Total Environ ; 924: 171674, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38479533

RESUMEN

Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.


Asunto(s)
Dípteros , Microplásticos , Ácidos Ftálicos , Animales , Larva , Plásticos , Plastificantes , Dípteros/microbiología , Ésteres
12.
Forensic Sci Int ; 357: 111972, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430653

RESUMEN

The cosmopolitan blow fly Lucilia sericata is often used in forensic case work for estimating the minimum postmortem interval (PMImin). For this, the age of immature specimens developing on the dead body is calculated by measuring the time taken to reach the sampled developmental stage at a given temperature. To test whether regional developmental data of L. sericata is valid on a global scale, the time taken to reach different developmental stages was compared between a population from Mexico and one from Germany at two different constant temperatures. The German population of L. sericata was collected in Frankfurt/Main, while the Mexican population originated near Oaxaca de Juarez and was transported to Germany in the larval stage. Only the F1 generation was used to avoid adaption of the Mexican flies. Eggs were immediately placed at 20 °C and 30 °C. Five times 30 freshly eclosed larvae per replicate (n = 5) were then transferred to a cup of minced meat in separate containers. The larvae were checked every 8 h for migration, pupariation or emergence of adult flies. The time at which the first individual and 50 % of the specimens per container entered each of these stages, was recorded. Significant differences in the time of development between the two populations were observed at both temperatures. At 20 °C, the first specimens of the Mexican population reached all developmental stages a little (< 1 day to < 2 days) earlier than the German L. sericata. At 30 °C, the Mexican flies also reached the post-feeding stage slightly earlier (0.2 days). However, at 30 °C, the German flies started pupariation significantly earlier (after 5 days) than the Mexican flies (6.9 days) and the adults from Germany also emerged earlier (10.5 days compared to 13.1 days). The same pattern was observed when looking at 50 % of the total number of specimens per container. A comparison with previously published developmental studies was difficult as the experimental design varied widely between studies. However, the results were within the range of most studies. Our study has shown that age estimation can vary widely depending on the population on which the reference data used for the calculations are based. This highlights the importance of using local and population-specific developmental data for estimating the age of blow flies in case work.


Asunto(s)
Calliphoridae , Dípteros , Animales , Entomología , Larva , Temperatura
13.
Insect Biochem Mol Biol ; 168: 104110, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522557

RESUMEN

The black soldier fly (BSF), Hermetia illucens, has gained traction recently as a means to achieve closed-loop production cycles. BSF can subsist off mammalian waste products and their consumption of such waste in turn generates compost that can be used in agricultural operations. Their environmental impact is minimal and BSF larvae are edible, with a nutritional profile high in protein and other essential vitamins. Therefore, it is conceivable to use BSF as a mechanism for both reducing organic waste and maintaining a low-impact food source for animal livestock or humans. The main drawback to BSF as a potential human food source is they are deficient in fat-soluble vitamins such as Vitamins A, D, and E. While loading BSF with essential vitamins may be achieved via diet-based interventions, this undercuts the goal of a closed-loop as specialized diets would require additional supply chains. An alternative is to genetically engineer BSF that can synthesize these essential vitamins. Here we describe a BSF line that has been engineered with the two main carotenoid biosynthetic genes, CarRA and CarB for production of provitamin carotenoids within the Vitamin A family. Our data describe the manipulation of the BSF genome to insert transgenes for expression of functional protein products.


Asunto(s)
Dípteros , Humanos , Animales , Dípteros/genética , Larva/genética , Animales Modificados Genéticamente , Vitaminas , Mamíferos
14.
Gene ; 913: 148356, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38462022

RESUMEN

Horseflies from the Tabanidae family play a significant role in traditional Chinese medicine to treat various health conditions, including coronary heart disease, stroke, headaches, liver cirrhosis, psoriasis, and hepatic carcinoma. There are 27 species of Tabaninae (Tabanidae) used as medicine, and they showed high morphological similarities with those for which medicinal properties have not been reported. Nonetheless, there have been reports suggesting that medicinal crude drugs sometimes contain irrelevant or false species, impacting the drug's efficacy. In this current study, we collected 14 batches, totaling 13,528 individuals, from various provinces in China. Instead of "classic" DNA barcoding strategy, we employed a high-throughput metabarcoding approach to assess the biological composition of crude drug mixtures derived from horseflies. Our analysis identified 40 Amplicon Sequence Variants (ASVs) with similarity percentages ranging from 92% to 100% with 12 previously reported species. Species delimitation methods revealed the presence of 11 Molecular Operational Taxonomic Units (MOTUs), with ten belonging to the Tabanus genus and one to Hybomitra. Tabanus sp6 displayed the highest relative abundance, and its ASVs showed close resemblance to Tabanus pleski. Our investigations revealed that the medicinal batches were biologically composed of 6 to 12 species. Some batches contained ASVs that closely resembled species previously associated with false Tabanus species. In conclusion, our findings offer valuable insights into the biological composition of crude drugs derived from horseflies and have the potential to enhance the quality of these traditional medicines.


Asunto(s)
Dípteros , Humanos , Animales , Dípteros/genética , Biodiversidad , China , Código de Barras del ADN Taxonómico
15.
Dev Biol ; 510: 29-30, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462050

Asunto(s)
Dípteros , Animales , Aves
16.
Naturwissenschaften ; 111(2): 15, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478046

RESUMEN

In Earth's history warm and cold periods have alternated. Especially, during the Pleistocene, the alternation between these different climatic conditions has led to frequent range expansions and retractions of many species: while thermophilic species dispersed during warm periods, cold adapted species retracted to cold refugia and vice versa. After the last Pleistocene cycle many cold adapted taxa found refuges in relict habitats in mountain ranges. One example for such a cold adapted relict is the flightless snow fly Chionea araneoides (Dalman, 1816). It can be found in lower mountain ranges of Central Europe exclusively in stone runs and stony accumulations which provide cold microclimates. Imagines develop only in winter. They have strongly restricted ranges and hence experienced strong isolation predicting that local populations may show local adaptation and hence also genetic differentiation. We investigated this for several middle mountain ranges of Germany using the COI barcoding gene. Our analyses revealed two distinct lineages, one in the Bavarian Forest and a second one in all other more northern locations up to Scandinavia. These lineages likely go back to post-Pleistocene isolation and should be studied in more detail in the future, also to confirm the taxonomic status of both lineages. Further, we confirmed former records of the species for Germany and report new records for the federal states of Saxony, Lower Saxony, Saxony-Anhalt and Thuringia. Finally, we provide the first evidence of two types of males for the species, a small and a larger male type.


Asunto(s)
Dípteros , Masculino , Animales , Filogenia , Dípteros/genética , Hielo , Variación Genética , Nieve
17.
Water Res ; 254: 121405, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447376

RESUMEN

The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.


Asunto(s)
Arsénico , Dípteros , Eliminación de Residuos , Animales , Larva/metabolismo , Aguas del Alcantarillado , 60659 , Plomo/metabolismo , Alimentos , Biotransformación , Bacterias , Lactobacillus
18.
Vet Med Sci ; 10(3): e1417, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38516829

RESUMEN

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Asunto(s)
Bartonella , Dípteros , Phthiraptera , Humanos , Animales , Dípteros/genética , Dípteros/microbiología , Phthiraptera/genética , ADN Bacteriano/genética , Bartonella/genética , Rumiantes/genética , ADN , Alemania/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria
19.
Acta Trop ; 253: 107164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431136

RESUMEN

The anthropization process exerts a profound effect on ecosystems, causing alterations in biodiversity, habitat structure, and species composition, ultimately disrupting the delicate balance of natural environments. The aim of the present study was to explore the ecological dynamics of necrophagous Sarcophagidae and Calliphoridae flies along an anthropization gradient. This research investigated alpha and beta diversity patterns to unravel the impact of human-induced environmental changes on these insect communities and also assesses the dynamics of functional groups in relation to their impact on medical and forensic fields. Five distinct habitats, ranging from urban to forested areas, were surveyed in two Departments in the Province of Chaco, Argentina. Necrophagous flies were collected using van Someren-Rydon canopy traps across three seasons. Two main functional groups were analyzed: oviparous flies (Calliphoridae) and larviparous flies (Sarcophagidae). Results indicated a significant negative correlation between Sarcophagidae species richness and anthropization, whereas Calliphoridae showed increased abundance in highly anthropized sites. The combined assemblage of Calliphoridae+Sarcophagidae exhibited significant relationships across all community parameters evaluated. Beta diversity analysis revealed turnover as the main process shaping dipteran communities along the anthropization gradient, with spatial species replacement dominating. This underscores the importance of interspecific spatial segregation in dipteran community composition. In conclusion, this study enhances our understanding of the ecological adaptations of necrophagous dipterans to anthropogenic disturbances. The observed shifts in diversity and abundance have implications for forensic investigations and public health, emphasizing the need for nuanced monitoring and conservation strategies. This research contributes valuable insights into the intricate ecological interactions of these insect communities within changing ecosystems.


Asunto(s)
Dípteros , Sarcofágidos , Humanos , Animales , Ecosistema , Dípteros/fisiología , Sarcofágidos/fisiología , Calliphoridae , Insectos , Biodiversidad
20.
Environ Int ; 185: 108547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38458120

RESUMEN

Cadmium (Cd) is a toxic heavy metal associated with osteoporosis, liver, and kidney disease. The black soldier fly (BSF) Hermetia illucens may be exposed to Cd during the transformation of livestock manure. The BSF has a high tolerance to Cd. In the previous work of the laboratory, we found that vitamin E (VE) may play a role in the tolerance of BSF to Cd exposure. The main findings are as follows: The BSF larvae pretreated with exogenous VE had heavier body weight, lower content and toxicity of Cd under similar Cd exposure. Even in high Cd exposure at the concentrations of 300 and 700 mg/kg, the BSF larvae pretreated with exogenous VE at a concentration of 100 mg/kg still reduced the Cd toxicity to 85.33 % and 84.43 %, respectively. The best-fitting models showed that metallothionein (MT) content, oxidative damage (8-hydroxydeoxyguanosine content, malondialdehyde content), antioxidant power (total antioxidant power, peroxidase activity) had a great influence on content and toxicity of Cd bioaccumulated in the larvae. The degree of oxidative damage was reduced in the larvae with exogenous VE pretreatments. This variation can be explained by their changed MT content and increased antioxidant power because of exogenous VE. These results reveal the roles of VE in insects defense against Cd exposure and provide a new option for the prevention and therapy of damage caused by Cd exposure.


Asunto(s)
Cadmio , Dípteros , Animales , Cadmio/toxicidad , Vitamina E/farmacología , Antioxidantes , Larva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...